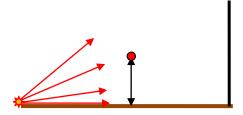
7-9 классы, подготовка к теоретическому туру

олимпиады школьников «Робофест» по физике

Набор задач для самостоятельного решения к вводному занятию «колебания и волны».

Задача 1 (1 балл) [колебания, амплитуда]

Маленький мячик скачет вертикально, подпрыгивая каждый раз на высоту h=0.5 м. Мячик освещается небольшой лампочкой, размещенной на уровне земли. Расстояние от лампочки до точки на земле, о которую ударяется мячик, в точности равно расстоянию от этой точки до основания высокой вертикальной стены (см.рис.). С какой амплитудой совершает колебания тень шарика на стене? Ответ запишите в метрах, с точностью до десятых.



Подсказка 1: Амплитуда колебаний – максимальное отклонение от «среднего» положения объекта.

Решение:

Амплитуда колебаний — максимальное отклонение от «среднего» положения объекта. Ясно, что размах колебаний тени на стене — от уровня земли до 2h. Поэтому амплитуда колебаний равна $h=0.5\,\mathrm{m}$.

Ответ: 0,5.

Задача 2 (3 балла) [пружинный маятник, гармонические колебания, амплитуда]

Грузик, подвешенный на пружине, совершает вертикальные колебания, затухание которых почти не заметно. За время $t=20\,\mathrm{c}$ он $N=25\,\mathrm{pa}$ за опустился из самой верхней в самую нижнюю точку (и столько же раз поднялся), пройдя за это время путь $s=180\,\mathrm{cm}$. Найти максимальную величину скорости колебаний грузика. Ответ запишите в см/с, с точностью до целого значения.

Подсказка 1: Период колебаний грузика $T = \frac{t}{N} = 0.8 \,\mathrm{c}.$

Подсказка 2: Пройденный путь соответствует 4N амплитудам колебаний, поэтому $x_m = \frac{s}{4N} = 1,8\,\mathrm{cm}.$

Подсказка 3: Амплитуда скорости связана с амплитудой смещения соотношением $v_m = \omega \cdot x_m$.

Решение:

Как видно, период колебаний грузика $T=\frac{t}{N}=0.8\,\mathrm{c}$. Ясно, что пройденный путь соответствует 4N амплитудам колебаний, поэтому $x_m=\frac{s}{4N}=1.8\,\mathrm{cm}$. Максимальная величина скорости соответствует амплитудному значению скорости, которое связано с амплитудой смещения соотношением $v_m=\omega\cdot x_m$. Поэтому $v_m=2\pi\cdot\frac{x_m}{T}=\frac{\pi s}{2t}\approx 14\,\mathrm{cm/c}$.

Ответ: 14.

Задача 3 (4 балла) [пружинный маятник, гармонические колебания]

Две небольшие шайбы с массами $m_1 = 300$ г и $m_2 = 900$ г, находящиеся на горизонтальном гладком стержне, прикреплены к разным концам легкой пружины с жесткостью k = 90 Н/м. Изначально шайбы покоились. Их немного раздвинули в разные стороны, увеличив длину пружины, и аккуратно отпустили. Найдите период изменения расстояния между шайбами после этого. Ответ запишите в секундах, с точностью до десятых.

Подсказка 1: Если изучать движение в проекции на ось x, направленную вдоль стержня, и отсчитывать координату каждой шайбы от ее положения равновесия, то деформация пружины равна $\Delta l = x_2 - x_1$.

Подсказка 2: Удобно рассмотреть уравнение движения для относительной координаты $x = x_2 - x_1$.

Подсказка 3: Относительная координата изменяется с ускорением.

Решение:

Введем ось x, направленную вдоль стержня, и будем отсчитывать координату каждой шайбы от ее положения равновесия (отметим, что, когда шайбы покоились, то пружина не была деформирована). Тогда растяжение пружины соответствует $\Delta l = x_2 - x_1$. Запишем уравнения движения шайб в проекциях на эту ось и преобразуем их:

$$\begin{cases}
 m_1 a_1 = k(x_2 - x_1) \\
 m_2 a_2 = k(x_1 - x_2)
\end{cases} \Rightarrow
\begin{cases}
 a_1 = \frac{k}{m_1}(x_2 - x_1) \\
 a_2 = \frac{k}{m_2}(x_1 - x_2)
\end{cases} \Rightarrow a_2 - a_1 = -\frac{k(m_1 + m_2)}{m_1 m_2}(x_2 - x_1).$$

Как видно, *относительная координата* шайб $x=x_2-x_1$ изменяется с ускорением $a=-\frac{k(m_1+m_2)}{m_1m_2}x$, то есть точно так же, как координата груза массой $m=\frac{m_1m_2}{m_1+m_2}$, совершающего колебания на пружине жесткостью k. Поэтому период этих колебаний $T=2\pi\cdot\sqrt{\frac{m_1m_2}{k(m_1+m_2)}}\approx 0{,}314\,\mathrm{c}.$

Задача 4 (3 балла) [пружинный маятник, математический маятник, гармонические колебания]

Маленький тяжелый грузик подвесили на легкой пружине, и измерили период его вертикальных колебаний. Точно такой же грузик подвесили на легкой нерастяжимой нити, подобрав ее длину так, чтобы период малых колебаний полученного маятника в точности равнялся периоду колебаний на пружине первого груза. Оба получившихся маятника (пружинный и «математический») доставили на Луну и запустили. Найдите отношение периодов этих маятников на Луне. В ответе укажите $\frac{T_{\text{маm}}}{T_{np}}$, с точностью до сотых. Ускорение

свободного падения на поверхности Земли считайте равным $g \approx 9.81 \text{м/c}^2$, на поверхности Луны – $g' \approx 1.62 \, \text{м/c}^2$.

Подсказка 1: Период колебаний пружинного маятника $T=2\pi\cdot\sqrt{\frac{m}{k}}$.

Ответ: 0.3.

Подсказка 2: Период малых колебаний математического маятника $T=2\pi\cdot\sqrt{\frac{l}{g}}$.

Подсказка 3: Период вертикальных колебаний пружинного маятника на Луне не изменится.

Решение:

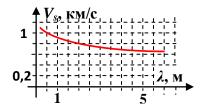
Период вертикальных колебаний пружинного маятника $T=2\pi\cdot\sqrt{\frac{m}{k}}$ не зависит от ускорения свободного падения, и поэтому на Луне он не изменится. Период малых колебаний математического маятника $T=2\pi\cdot\sqrt{\frac{l}{g}}$, и он на Луне увеличится. Следовательно,

$$\frac{T_{\text{mam}}}{T_{np}} = \sqrt{\frac{g}{g'}} \approx 2,46.$$

Ответ: 2,46.

Задача 5 (2 балла) [волны, длина волны, частота волны]

Свойства звуковых волн в разных материалах часто описывают *законом дисперсии*, описывающим связь скорости распространения звуковой волны V_s с длиной волны λ . На рисунке показан график зависимости $V_s(\lambda)$ для некоторого материала. Найдите частоту колебаний звукового давления в волне с $\lambda = 2$ м. Ответ запишите в Γ ц, с точностью до сотен.



Подсказка 1: Скорость распространения волны связана с частотой и длиной волны соотношением $V_s = \lambda \cdot \nu$.

Подсказка 2: Из графика видно, что при $\lambda = 2$ м скорость распространения $V_s(\lambda) \approx 800$ м/с.

Решение:

Скорость распространения волны связана с частотой и длиной волны соотношением $V_s = \lambda \cdot \nu$. Следовательно, $\nu(\lambda) = \frac{V_s(\lambda)}{\lambda}$. Определим из графика, что при $\lambda = 2$ м скорость распространения $V_s(\lambda) \approx 800$ м/с. Значит, $\nu(\lambda) \approx 400$ Гц.

Ответ: 400.

Задача 6 (3 балла) [однородное поле, равномерное движение, равноускоренное движение]

При полете за нектаром пчела летит со скоростью $V_1 = 6$ м/с, и при этом длина волны звука ее крыльев $\lambda_1 = 0.8$ м. При полете обратно (с грузом нектара) пчела летит со скоростью $V_2 = 5$ м/с, а длина волны звука $\lambda_2 = 1.2$ м. Во сколько раз больше взмахов крыльев сделает пчела при полете за нектаром, чем при полете обратно? Ответ запишите с точностью до сотых.

Подсказка 1: Частота звука крыльев пчелы равна частоте взмахов крыльев.

Подсказка 2: Время полета пчелы за нектаром $t = \frac{s}{V}$, где s – ее путь.

Подсказка 3: Частота взмахов крыльев пчелы $v = \frac{u}{\lambda}$, где u – скорость звука в воздухе.

Решение:

Частота звука крыльев пчелы равна частоте взмахов крыльев. Пусть s — путь пчелы в одну сторону. Тогда время ее полета за нектаром $t_1=\frac{s}{V_1}$, а частота взмахов крыльев $v_1=\frac{u}{\lambda_1}$, где u — скорость звука в воздухе. Значит, количество взмахов крыльев пчелы при полете за нектаром $N_1=v_1t_1=\frac{su}{V_1\lambda_1}$. Аналогично $N_2=v_2t_2=\frac{su}{V_2\lambda_2}$. Значит, $\frac{N_1}{N_2}=\frac{V_2\lambda_2}{V_1\lambda_1}=1,25$. Ответ: 1,25.

Задача 7 (4 балла) [волны, вращение по окружности]

Подводная лодка плавно всплывает вертикально вверх с постоянной скоростью. Ее гидролокатор излучает ультразвуковые импульсы длительностью $\tau_0 = 10,000$ мс. Приемник гидролокатора фиксирует отраженные от дна импульсы длительностью $\tau \approx 10,025$ мс. С какой скоростью всплывает лодка? Считать, что скорость ультразвука в воде при условиях, соответствующих измерению, известна с высокой точностью: $u \approx 1475$ м/с. Ответ дайте в м/с, с точностью до десятых.

Подсказка 1: Сначала нужно найти время t, за которое ультразвук, излучаемый локатором лодки, всплывающей со скоростью V в момент, когда она находилась на высоте h над дном, вернется к приемнику.

Подсказка 2: Это время определяется из уравнения $u \cdot t = 2h + V \cdot t$.

Подсказка 3: Длительность импульса увеличивается из-за того, что его «передний» фронт потратит на это «путешествие» больше времени, чем «задний»: $t_{\kappa} > t_{\mu}$.

Решение:

Испущенный гидролокатором импульс пройдет до дна, отразится и догонит лодку за некоторое время t. Лодка, движущаяся со скоростью V, пройдет за это время расстояние $V \cdot t$. Поэтому t определяется из уравнения $u \cdot t = 2h + V \cdot t$. Как видно, ультразвук, излучаемый локатором лодки, всплывающей со скоростью V в момент, когда она находилась на высоте h над дном, вернется к приемнику спустя время $t = \frac{2h}{u - V}$. Поскольку лодка поднимается, то «передний» фронт импульса потратит на это «путешествие» больше времени, чем «задний»: $t_{\kappa} > t_{\scriptscriptstyle H}$. Поэтому длительность принимаемого импульса увеличится

$$\tau = \tau_0 + t_{\scriptscriptstyle K} - t_{\scriptscriptstyle H} = \tau_0 + \frac{2(h + V\tau_0)}{u - V} - \frac{2h}{u - V} = \frac{u + V}{u - V}\tau_0 \text{ . Следовательно, } V = \frac{\tau - \tau_0}{\tau + \tau_0} u \approx 1.8 \text{ м/c.}$$

Ответ: 1,8.