
10-11 классы, подготовка к теоретическому туру олимпиады школьников «Робофест» по физике

Набор задач для самостоятельного решения к вводному занятию «Электромагнитная индукция».

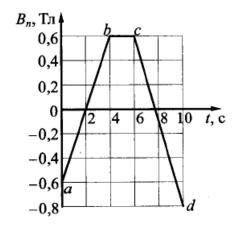
Задача 1 (2 балла) [магнитная индукция, магнитный поток]

Проводящий контур проложен по ребрам куба с ребром $a=20\,\mathrm{cm}$ (см. рисунок). В области расположения контура создано однородное магнитное поле, вектор индукции которого в показанной на рисунке системе координат имеет компоненты $\vec{B}=(B_x,B_y,B_z)=(3,4,5)\,\mathrm{T}\pi$. Найдите поток магнитного поля через этот контур. Ответ запишите в веберах с точностью до сотых.

Подсказка 1: Поток через контур, состоящий из нескольких участков, есть сумма потоков через отдельные участки.

Подсказка 2: Для каждой грани поток равен площади грани, умноженной на перпендикулярную этой грани компоненту магнитной индукции.

Подсказка 3: Компоненты индукции в заданной системе координат и есть ее компоненты, перпендикулярные граням куба.


Решение:

Поток через контур, состоящий из нескольких участков, есть сумма потоков через отдельные участки. Поскольку компонента вектора магнитной индукции, параллельная плоскости фигуры, дает нулевой вклад в магнитный поток через площадь этой фигуры, то для каждой грани поток равен площади грани a^2 , умноженной на перпендикулярную этой грани компоненту магнитной индукции. При этом компоненты индукции в заданной системе координат $\vec{B} = (B_x, B_y, B_z)$ и есть ее компоненты, перпендикулярные граням куба. Следовательно, $\Phi = (B_x + B_y + B_z)a^2 = 0.48$ Вб.

Ответ: 0.48.

Задача 2 (3 балла) [магнитный поток, электромагнитная индукция]

Проволочная рамка с сопротивлением R=0,2 Ом находится в однородном магнитном поле с индукцией \vec{B} . На рисунке изображено изменение проекции \vec{B} на перпендикуляр к плоскости рамки с течением времени. За время t=10 с в рамке выделилось количество теплоты Q=4,1 мДж. Какова площадь рамки? Ответ дайте в квадратных сантиметрах, с точностью до целого значения.

Подсказка 1: Величина ЭДС индукции, согласно закону Фарадея, $\mathcal{E}_i = \frac{\Delta \Phi}{\Delta t} = S \frac{\Delta B_n}{\Delta t}$.

Подсказка 2: Поэтому тепло выделяется только в периоды, когда B_n изменяется, то есть в интервалы времени от 0 с до 4 с и от 6 с до 10 с.

Подсказка 3: Количество теплоты для каждого интервала $Q = \frac{\mathcal{E}_i^2}{R} \Delta t = \frac{S^2}{R} \frac{(\Delta B_n)^2}{\Delta t}$.

Решение:

Величина ЭДС индукции, согласно закону Фарадея, $\mathcal{E}_i = \frac{\Delta \Phi}{\Delta t} = S \frac{\Delta B_n}{\Delta t}$. Эта ЭДС создает в рамке ток, величина которого определяется законом Ома: $I = \frac{\mathcal{E}_i}{R} = \frac{S}{R} \frac{\Delta B_n}{\Delta t}$. По рамке пройдет заряд, и ЭДС индукции совершит работу $A = \mathcal{E}_i I \Delta t = \frac{\Delta \Phi}{\Delta t} I \Delta t = \frac{S^2}{R} \frac{(\Delta B_n)^2}{\Delta t}$. Именно эта работа переходит в тепло. Итак, тепло выделяется только в периоды, когда B_n изменяется, то есть в интервалы времени от 0 с до 4 с и от 6 с до 10 с. Оба интервала равны $\Delta t = 4$ с, а проекция индукции в первом случае изменяется на $\Delta B_1 = +1,2$ Тл, а во втором — на $\Delta B_2 = -1,4$ Тл. Таким образом, выделившееся тепло $Q = \frac{S^2}{R} \frac{(\Delta B_1)^2 + (\Delta B_2)^2}{\Delta t}$. Из этого соотношения

находим: $S = \sqrt{\frac{RQ\Delta t}{{(\Delta B_1)}^2 + {(\Delta B_2)}^2}} \approx 310 \,\mathrm{cm}^2.$

Ответ: 310.

Задача 3 (2 балла) [сила Лоренца, электромагнитная индукция]

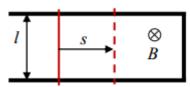
Тонкий алюминиевый брусок прямоугольного сечения, имеющий длину $L=50\,\mathrm{cm}$, соскальзывает из состояния покоя по гладкой наклонной плоскости из диэлектрика в вертикальном магнитном поле с индукцией $B=0,2\,\mathrm{Tn}$. Плоскость наклонена к горизонту под углом $\alpha=30^\circ$. Продольная ось бруска при движении сохраняет горизонтальное направление. Найдите величину разности потенциалов на концах бруска в момент, когда брусок пройдет по наклонной плоскости расстояние $s=1,6\,\mathrm{m}$.

Подсказка 1:..

Подсказка 2: .

Подсказка 3: .

Решение:


На электрон проводимости, движущийся вместе с корпусом самолета, действует сила Лоренца, равная по величине $F = |e|Bv\sin(10^\circ)$, так как согласно условию, угол между \vec{v} и \vec{B} равен 10°. Перемещение электронов прекратится, когда сила Лоренца будет уравновешена

силой, действующей со стороны возникшего из-за разделения зарядов электрического поля. Из условия равенства сил можно найти величину напряженности этого поля $|e|E = e|Bv\sin(10^\circ) \Rightarrow E = Bv\sin(10^\circ)$. Искомая разность потенциалов $\Delta \varphi = EL = BvL\sin(10^\circ) \approx 7\,\mathrm{B}$. При вычислении было учтено, что 720 км/ч = 200 м/с.

Ответ: .

Задача 4 (4 балла) [магнитный поток, электромагнитная индукция]

На П-образной шине с пренебрежимо малым сопротивлением лежит перемычка, длина которой l=20см. Перемычка перпендикулярна сторонам шины. В окружающем пространстве создано магнитное поле с индукцией B=0,5 Тл, перпендикулярное плоскости шины. Перемычку плавно перемещают, не поворачивая, на расстояние s=15см. Найти величину заряда, протекшего через перемычку за время перемещения. Сопротивление перемычки R=10Ом. Ответ запишите в микрокулонах, с точностью до целого значения.

Подсказка 1: При движении перемычки изменяется магнитный поток через проводящий контур, образованный перемычкой и участком шины.

Подсказка 2: Величина ЭДС индукции
$$\mathcal{E}_i = \frac{\Delta \Phi}{\Delta t} = \frac{Blv\Delta t}{\Delta t} = Blv$$
.

Подсказка 3: Заряд, протекший через перемычку за время перемещения, равен произведению силы индукционного тока на это время.

Решение:

При движении перемычки изменяется магнитный поток через проводящий контур, образованный перемычкой и участком шины. Поэтому, в соответствии с законом электромагнитной индукции Фарадея, в контуре возникнет индукционный ток. Величина ЭДС индукции $\mathcal{E}_i = \frac{\Delta\Phi}{\Delta t}$. Так как линии индукции перпендикулярны плоскости контура, то магнитный поток равен произведению B на площадь контура. Пусть скорость перемещения перемычки равна v, тогда за время Δt площадь контура изменяется на $l \cdot v \Delta t$, и поэтому изменение магнитного потока $\Delta \Phi = Blv\Delta t$. Значит, $\mathcal{E}_i = Blv$, и в соответствии с законом Ома сила индукционного тока $I = \frac{\mathcal{E}_i}{R} = \frac{Blv}{R}$. Заряд, потекший за время движения $q = It = \frac{Bl}{R}vt = \frac{Bls}{R} = 1,5 \cdot 10^{-4}\,\mathrm{K}$ л.

Ответ: 150.

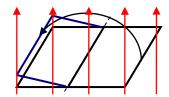
Задача 5 (4 балла) [магнитный поток, электромагнитная индукция]

По двум горизонтальным гладким параллельным шинам может скользить, перемещаясь поступательно, перпендикулярная шинам проводящая перемычка. С одной стороны к концам шин подключен (через изначально разомкнутый ключ) источник постоянного тока с ЭДС 24 В, в другую сторону шины продолжаются очень далеко. Сопротивление шин мало по сравнению с сопротивлением перемычки и внутренним сопротивлением источника. Длина перемычки 0,4 м. В окружающем пространстве создано однородное вертикальное магнитное поле с индукцией 1 Тл. Сначала перемычка покоится. Когда ключ замыкают, перемычка начинает двигаться от источника. До какой максимальной скорости может разогнаться перемычка? Ответ запишите в м/с, с точностью до целого значения.

Подсказка 1: При движении с постоянной скоростью величина ЭДС индукции $\mathcal{E}_i = B \frac{dS}{dt} = B l \frac{dx}{dt} = B l v \, .$

Подсказка 2: Сила тока в контуре, образованном источником, шинами и перемычкой $I = \frac{\mathrm{E} - B v l}{R + r} \,.$

Подсказка 3: Перемычку разгоняет сила Ампера $F_{\scriptscriptstyle A} = IBl$, которой другие силы не противодействуют.


Решение:

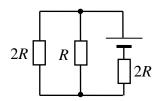
При движении с постоянной скоростью величина ЭДС индукции $E_i = B \frac{dS}{dt} = Bl \frac{dx}{dt} = Blv$, а сила тока в контуре, образованном источником, шинами и перемычкой $I = \frac{E - Bvl}{R + r}$. Перемычку разгоняет сила Ампера $F_A = IBl$, которой другие силы не противодействуют. Поэтому разгон прекратится, а скорость станет максимальной, когда ток обратится в ноль, то есть когда ЭДС индукции уравновесит ЭДС источника: $E = Blv \Rightarrow v = \frac{E}{Rl} = 60$ м/с.

Ответ: 60.

Задача 6 (4 балла) [магнитный поток, электромагнитная индукция]

Из проволоки поперечного сечения $\sigma = 1$ мм² с удельным сопротивлением $\rho = 10^{-7}$ Ом·м изготовлена рамка в виде квадрата с перемычкой посередине (см. рисунок). Длина стороны квадрата равна a = 40см. Рамку поместили в однородное магнитное поле с индукцией B = 5 Тл, перпендикулярное ее плоскости. Затем рамку согнули «пополам» вокруг перемычки. Какой заряд протечет через перемычку за время сгибания? Ответ запишите в кулонах, с точностью до целого значения.

Подсказка 1: При сгибании рамки изменяется магнитный поток через «**правую**» половину рамки, и именно в ней появляется ЭДС индукции.


Подсказка 2: Можно считать, что значение силы тока в каждый момент времени связано с мгновенным значением ЭДС так же, как при постоянном токе, и использовать эквивалентную схему контура.

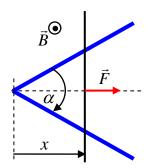
Подсказка 3: При правильной эквивалентной схеме ток через перемычку $I_R = \frac{\mathcal{E}_i}{4R}$, где

 $R = \rho \frac{a}{\sigma}$ — сопротивление участка проволоки с длиной, соответствующей стороне квадрата.

Решение:

При сгибании рамки изменяется магнитный поток через «правую» половину рамки. За счет этого в движущейся части контура появляется ЭДС индукции, и в контуре течет ток. Поскольку механическое движение существенно медленнее электромагнитных процессов, мы можем использовать квазистационарное приближение, в рамках которого будем считать, что значение силы тока в каждый момент времени связано с мгновенным значением ЭДС так же, как при постоянном токе. Эквивалентная схема конура имеет вид,

показанный на рисунке. Здесь $R=\rho\frac{a}{\sigma}$ — сопротивление участка проволоки с длиной, соответствующей стороне квадрата. Легко определить, что ток в ветви с ЭДС $I=\frac{\mathcal{E}}{2R+(2/3)R}=\frac{3\mathcal{E}}{8R}$, и через перемычку течет $\frac{2}{3}$ этого тока, то есть $I_R=\frac{\mathcal{E}}{4R}$. Поскольку $\mathcal{E}=\frac{\Delta\Phi}{\Delta t}$, то $\Delta q_R=I_R\Delta t=\frac{1}{4R}\Delta\Phi$, то есть протекший заряд пропорционален изменению магнитного потока. Суммируя малые приращения, приходим к конечным изменениям:


$$q_R = \frac{\mid \Phi_K - \Phi_H \mid}{4R} \Rightarrow \frac{(Ba^2/2) - (-Ba^2/2)}{4R} = \frac{Ba^2}{4R} .$$

Подставляя сюда R, находим: $q_R = \frac{Ba\sigma}{4\rho} = 5$ Кл.

Ответ: 5.

Задача 7 (5 баллов) [магнитный поток, электромагнитная индукция]

Проводник, согнутый под углом $\alpha=60^\circ$, расположен в горизонтальной плоскости. Металлический стержень может без трения скользить перпендикулярно биссектрисе угла. Индукция однородного вертикального магнитного поля равна B=0.01Тл. К стержню приложена горизонтальная сила F=kx, где расстояние x отсчитывается от вершины угла, а k=200 Н/м. Определить максимальную скорость стержня. В процессе движения стержень не теряет контакта с обеими сторонами угла. Сопротивление единицы длины стержня равно $\rho=10^{-7}$ Ом·м, сопротивление проводника и контакта пренебрежимо мало. Ответ запишите в см/с, с точностью до целого значения

Подсказка 1: При движении стержня будет увеличиваться площадь треугольника, образованного стержнем и «уголком» из проводника: $S = x^2 \operatorname{tg}\left(\frac{\alpha}{2}\right)$.

Подсказка 2: Сопротивление участка стержня, по которому течет ток, $R = 2\rho x \operatorname{tg}\left(\frac{\alpha}{2}\right)$.

Подсказка 3: Скорость стержня достигнет максимального значения, когда ускорение станет равным нулю, то есть сила F = kx будет уравновешена силой Ампера $F_A = IB \cdot 2x \operatorname{tg}\left(\frac{\alpha}{2}\right)$, действующей на стержень со стороны магнитного поля.

Решение:

Приложим к стержню силу F, тогда при движении стержня будет увеличиваться площадь треугольника, образованного стержнем и «уголком» из проводника: $S = x^2 \operatorname{tg}\left(\frac{\alpha}{2}\right)$. Поток магнитной индукции $\Phi = BS$, ЭДС индукции, возникающая в контуре $|\mathcal{E}| = \frac{d\Phi}{dt} = 2Bx\operatorname{tg}\left(\frac{\alpha}{2}\right)\frac{dx}{dt} = 2Bx\operatorname{tg}\left(\frac{\alpha}{2}\right)v$. Сопротивление участка стержня, по которому течет ток, $R = 2\rho x\operatorname{tg}\left(\frac{\alpha}{2}\right)$. В стержне возникнет ток, пропорциональный скорости: $I = \frac{|\mathcal{E}|}{R} = \frac{B}{\rho}v$. Сила Ампера, действующая на проводник, $F_A = IB2x\operatorname{tg}\left(\frac{\alpha}{2}\right) = \frac{2B^2xv}{\rho}\operatorname{tg}\left(\frac{\alpha}{2}\right)$. Уравнение движения стержня: $ma = F - F_A$, то есть $ma = x\left[k - \frac{2B^2v}{\rho}\operatorname{tg}\left(\frac{\alpha}{2}\right)\right]$. Скорость стержня достигнет максимального значения, когда ускорение станет равным нулю. Значит, $k - \frac{2B^2v_{\max}}{\rho}\operatorname{tg}\left(\frac{\alpha}{2}\right) = 0$, и $v_{\max} = \frac{k\rho}{2B^2}\operatorname{ctg}\left(\frac{\alpha}{2}\right) \approx 0,173$ м/с.

Ответ: 17.