11 класс, Экспресс-подготовка к ЕГЭ по физике

Набор задач для самостоятельного решения по занятию 4.

Темы: гармонические колебания.

Задача 1 (2 балла) [гармонические колебания, математический маятник]

Шарик на длинной легкой нерастяжимой нити совершает колебания. Максимальная потенциальная энергия шарика в поле тяжести, если ее считать равной нулю в положении равновесия, равна 0,8 Дж. Максимальная скорость шарика в процессе колебаний равна 2 м/с. Чему равна масса шарика? Сопротивлением воздуха пренебречь. Ответ запишите в граммах. Подсказка 1: В процессе колебаний потенциальная энергия шарика в поле тяжести переходит в его кинетическую энергию и обратно, причем их сумма остается неизменной.

Подсказка 2: Максимальная кинетическая энергия достигается при прохождении равновесия, а максимальная потенциальная – в момент остановки.

Решение.

Поскольку сопротивление воздуха отсутствует, то полная механическая энергия сохраняется. В процессе колебаний потенциальная энергия шарика в поле тяжести переходит в его кинетическую энергию и обратно. Максимальная кинетическая энергия, равная $\frac{mv_{\text{max}}^2}{2}$, достигается при прохождении равновесия, а максимальная потенциальная ($E=0.8\,\text{Дж}$) – в момент остановки. Поэтому $\frac{mv_{\text{max}}^2}{2}=E \Rightarrow m=\frac{2E}{v_{\text{max}}^2}=0.4\,\text{кг}$. Ответ: 400.

Задача 2 (4 балла) [закон Гука, пружинный маятник, гармонические колебания]

Небольшой брусок был подвешен неподвижно на невесомой пружине в поле тяжести. Удлинение пружины в этом состоянии было равно $\Delta l_0 = 4.8\,\mathrm{cm}$. Удерживая его на месте, к нему прикрепили груз с массой, в два раза превышающей массу самого бруска и аккуратно отпустили. После этого получившийся пружинный маятник совершал практически гармонические вертикальные колебания. Найдите максимальную скорость «составного» груза в ходе этих колебаний. Ускорение свободного падения считать равным $g \approx 10\,\mathrm{m/c}^2$, силами трения пренебречь. Ответ выразить в см/с.

Подсказка 1: масса составного груза в три раза больше массы бруска, и новое равновесное удлинение пружины также в три раза больше: $\Delta l_1 = 3 \cdot \Delta l_0$.

Подсказка 2: составной груз начинает колебания без начальной скорости, находясь на расстоянии $x_{\scriptscriptstyle m} = 2 \cdot \Delta l_{\scriptscriptstyle 0}$ от положения равновесия.

Подсказка 3: амплитуда колебаний скорости
$$v_m = \omega x_m$$
, где $\omega = \sqrt{\frac{k}{3m}}$.

Решение:

Ясно, что масса составного груза в три раза больше массы бруска, и новое равновесное удлинение пружины также в три раза больше: $\Delta l_1 = 3 \cdot \Delta l_0$. Поэтому составной груз начинает колебания без начальной скорости, находясь на расстоянии $\Delta l_1 - \Delta l_0 = 2 \cdot \Delta l_0$ от положения равновесия. Поэтому амплитуда колебаний $x_m = 2\Delta l_0$. Амплитуда колебаний скорости

 $v_m = \omega x_m$, где $\omega = \sqrt{\frac{k}{3m}}$ (k - жесткость пружины, а m - масса бруска). С другой стороны,

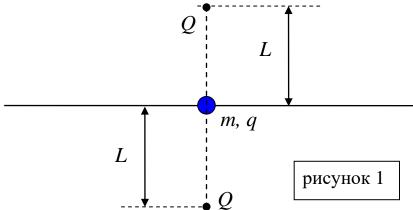
заданное начальное удлинение пружины $\Delta l_0 = \frac{mg}{k} \Rightarrow \frac{k}{m} = \frac{g}{\Delta l_0}$. Значит,

$$v_m = \sqrt{\frac{g}{3\Delta l_0}} \cdot 2\Delta l_0 = 2\sqrt{\frac{g \Delta l_0}{3}} = 0.8 \text{ m/c}.$$

Ответ: 80.

Задача 3 (5 баллов) [электростатическое взаимодействие, малые колебания, уравнение гармонических колебаний]

По гладкой горизонтальной непроводящей направляющей может свободно скользить бусинка массой m с зарядом q>0. На линии, перпендикулярной направляющей, на одинаковом расстоянии L от бусинки закрепили неподвижно одинаковые точечные заряды Q<0 (см. рисунок 1). При малом отклонении от начального положения возникли колебания с периодом T_0 . Во сколько раз изменится период малых колебаний бусинки, если величину заряда бусинки уменьшить в 4 раза? Излучением пренебречь.



Подсказка 1: в точке с координатой x, отсчитываемой вдоль направляющей от начального положения, бусинка будет находиться на расстояниях $r_1 = r_2 = \sqrt{L^2 + x^2}$ от закрепленных зарядов.

Подсказка 2: проекция на ось x суммарной силы взаимодействия бусинки с закрепленными зарядами $F_x = -q \cdot 2 \frac{kQ}{L^2 + x^2} \frac{x}{\sqrt{L^2 + x^2}}$.

Подсказка 3: уравнение малых колебаний бусинки приводится к виду уравнения гармонических колебаний $x'' + \frac{2kqQx}{mI^3} = 0$.

Решение:

Направим координатную ось x по линии движения бусинки, совместив начало координат с точкой старта. В точке с координатой x она будет находиться на расстояниях $r_1=r_2=\sqrt{L^2+x^2}$ от закрепленных зарядов, поэтому проекция на ось x суммарной силы взаимодействия бусинки с закрепленными зарядами

$$F_x = -q \cdot 2 \frac{kQ}{L^2 + x^2} \frac{x}{\sqrt{L^2 + x^2}}.$$

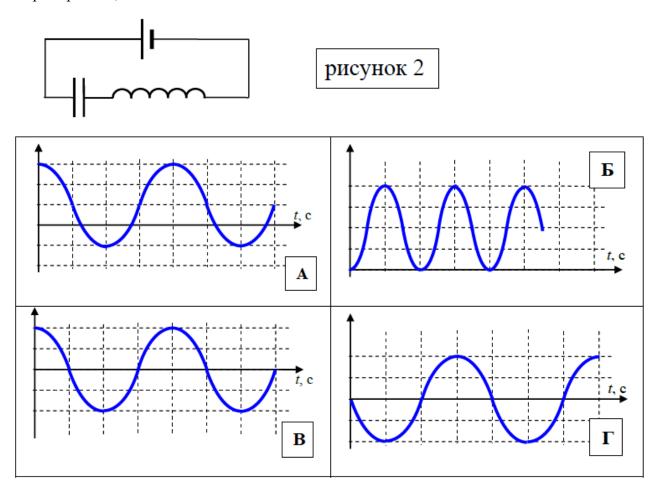
Конечно, эта сила не является линейной по x в общем случае, но для малых x << L

$$F_x \approx -\frac{2kqQx}{L^3},$$

и в результате уравнение малых колебаний бусинки $ma_x = F_x$ приводится к виду уравнения гармонических колебаний $x'' + \frac{2kqQx}{mL^3} = 0$. Таким образом, период малых колебаний бусинки $T = \frac{2\pi}{\omega} \approx \frac{\pi}{L} \sqrt{\frac{2mL}{kqQ}}$. Поэтому при уменьшении q в 4 раза период колебаний увеличится в два раза. Ответ: 2.

Задача 4 (3 балла) [гармонические колебания, колебательный контур]

В идеальном колебательном контуре, содержащем источник ЭДС (см. рисунок 2), происходят гармонические колебания. На графиках представлены зависимости от времени заряда конденсатора, силы тока, возникающей в катушке ЭДС индукции, энергии магнитного поля в катушке. Определить, к поведению какой из этих величин относится каждый график. Сопротивлением всех элементов контура пренебречь. В качестве ответа напишите подряд номера ответов для случаев А, Б, В и Г (не разделяя знаками препинания, например: 1432).



ЗАВИСИМОСТЬ ОТ ВРЕМЕНИ	ФИЗИЧЕСКАЯ ВЕЛИЧИНА
рисунок 2.	1) сила тока
	2) ЭДС индукции
	3) заряд конденсатора
	4) энергия магнитного поля

Таблица для ответа:

A	Б	В	Γ

Подсказка 1: проще всего установить, где находится графики заряда конденсатора и энергии магнитного поля.

Подсказка 2: колебания заряда конденсатора из-за присутствия источника происходят «несимметрично» относительно оси времени, несмотря на то, что он меняет знак, а энергия магнитного поля — единственная из заданных величин, которая всегда положительна.

Решение:

Проще всего установить, где находится графики заряда конденсатора и энергии магнитного поля: колебания заряда конденсатора $q(t) = CE + q_m \cos(\omega t + \varphi_0)$ (E - ЭДС источника) происходят «несимметрично» относительно оси времени, несмотря на то, что он меняет знак, поэтому ему соответствует график А (после этого вывода можно заметить, что $\varphi_0 = 0$). Энергия магнитного поля — единственная из заданных величин, которая всегда положительна, и ей соответствует график Б. Остальные графики легко подобрать к ним: сила тока должна проходить нули и максимумы «синхронно» с энергией магнитного поля (график Г), а ЭДС индукции лишь на постоянную добавку (ЭДС источника) отличается от напряжения на конденсаторе, которое в любой момент времени пропорционально заряду (график В). Проверка: исходя из выражения для заряда можно найти: $I(t) = -\omega q_m \sin(\omega t)$,

$$E_L(t) = \frac{LI^2}{2} = \frac{L\omega^2 q_m^2}{2} \sin^2(\omega t) \,, \ E_i = -L\frac{dI}{dt} = L\omega^2 q_m \cos(\omega t) \ \text{и проверить, что эти выражения отвечают найденным графикам.}$$

Ответ: 3421.

Задача 5 (4 балла) [пружинный маятник, гармонические колебания, неупругое соударение]

Небольшой груз, подвешенный на легкой пружине, совершал вертикальные гармонические колебания с амплитудой x_m . При прохождении им (сверху вниз) положения равновесия в него врезался другой такой же груз, непосредственно перед ударом летевший снизу вверх со скоростью, в два раза превосходящей амплитуду колебаний скорости первого груза до удара. В результате удара грузы «слиплись» и продолжили движение вдоль вертикальной оси пружины. Во сколько раз изменилась амплитуда колебаний «составного» груза по сравнению с x_m ? В ответе указать $\frac{x_m}{\widetilde{x}}$ в виде десятичной дроби, округлив до десятых.

Подсказка 1: можно считать, что при абсолютно неупругом соударении грузов выполняется закон сохранения вертикальной компоненты импульса и поэтому начальная скорость для колебания «составного» груза определяется из соотношения: $m 2 v_m - m v_m = 2 m \tilde{v}_m$.

Подсказка 2: поскольку масса груза возросла в два раза при той же пружине, то новая циклическая частота колебаний $\widetilde{\omega} = \sqrt{\frac{k}{2m}} = \frac{\omega}{\sqrt{2}}$.

Подсказка 3: в соответствии с кинематикой гармонических колебаний, амплитуды смещения и скорости связаны соотношением $v_m = \omega x_m$.

Решение:

При описании абсолютно неупругого соударения грузов можно считать, что выполняется закон сохранения вертикальной компоненты импульса и найти из него начальную скорость для колебания «составного» груза с массой, равной удвоенной массе одного груза m: $m2v_m-mv_m=2m\widetilde{v}_m\Rightarrow\widetilde{v}_m=\frac{1}{2}v_m$, то есть амплитуда скорости уменьшилась в два раза. Кроме того, поскольку масса груза возросла в два раза при той же пружине, то новая циклическая частота колебаний $\widetilde{\omega}=\sqrt{\frac{k}{2m}}=\frac{\omega}{\sqrt{2}}$. В соответствии с кинематикой гармонических колебаний, амплитуды смещения и скорости связаны соотношением $v_m=\omega x_m$ (и $\widetilde{v}_m=\widetilde{\omega}\,\widetilde{x}_m$), поэтому:

$$\frac{x_m}{\widetilde{x}_m} = \frac{\widetilde{\omega}}{\omega} \frac{v_m}{\widetilde{v}_m} = \sqrt{2} \approx 1.4.$$

Ответ: 1.4.

Задача 6 (4 балла) [сила трения, пружинный маятник, гармонические колебания]

Доска массы $M=500\,\mathrm{r}$ находится на гладкой горизонтальной поверхности. На доске лежит груз массы $m=100\,\mathrm{r}$, прикрепленный к неподвижной стенке легкой пружиной жесткости $k=15\,\mathrm{H/m}$. Ось пружины горизонтальна, коэффициент трения между доской и грузом равен $\mu=0,4$. Найти максимальную амплитуду гармонических колебаний груза на пружине. Ускорение свободного падения считать равным $g\approx 10\,\mathrm{m/c^2}$. Ответ выразить в миллиметрах, округлив до целых.

Подсказка 1: гармоничность колебаний нарушается, когда груз начинает скользить по доске. Подсказка 2: пока проскальзывания нет, уравнение движения доски с грузом $(M+m)a_x = -kx \Rightarrow x'' + \frac{k}{M+m}x = 0.$

Подсказка 3: ускорение доски создается силой трения со стороны груза, который прижат к доске силой тяжести, то есть $Ma_m = M\omega^2 x_m \leq \mu mg$.

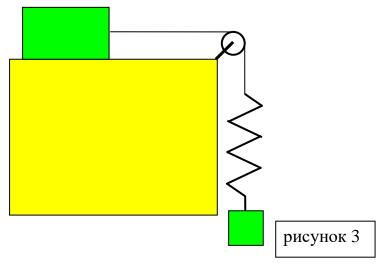
Решение

Начнем с определения причины нарушения гармоничности. Пока груз не скользит по доске, они вместе совершают гармонические колебания, но после того, как начинается проскальзывание, механическая энергия переходит в тепло, и колебания начинают затухать, а следовательно — перестают быть гармоническими. Пока проскальзывания нет, уравнение движения доски с грузом $(M+m)a_x = -kx \Rightarrow x'' + \frac{k}{M+m}x = 0$, и гармонические колебания происходят с циклической частотой $\omega = \sqrt{\frac{k}{M+m}}$. Если амплитуда колебаний равна x_m , то амплитуда изменения ускорения $a_m = \omega^2 x_m = \frac{kx_m}{M+m}$. Ускорение доски создается силой трения со стороны груза, который прижат к доске силой тяжести. Поскольку в отсутствие проскальзывания должно быть $|F_{mp}| \le \mu N$, то $Ma_m \le \mu mg \Rightarrow x_m \le \frac{\mu m(M+m)g}{Mk} \approx 32$ мм.

Ответ: 32.

Задача 7 (5 баллов) [сила трения, нерастяжимая нить, пружинный маятник, гармонические колебания]

Брусок массой M=900 г покоится на горизонтальном столе. Коэффициент трения между бруском и поверхностью стола $\mu=0,5$. К бруску с помощью легкой нерастяжимой нити, перекинутой через идеальный блок (см. рисунок 3), прикреплена легкая пружина и груз массы m=180 г . Частота малых колебаний груза $\nu=3$ Гц. Какова максимально возможная амплитуда этих колебаний, при которых они остаются гармоническими? Ускорение свободного падения считать равным $g\approx 10\,\mathrm{m/c^2}$. Сопротивлением воздуха пренебречь. Ответ записать в миллиметрах, округлив до целых.



Подсказка 1: груз будет совершать гармонические колебания только при выполнении двух условий: брусок не будет скользить по столу и нить не будет провисать.

Подсказка 2: первое условие будет выполнено, если даже при максимальном растяжении пружины (в самом нижнем положении груза) силы натяжения нити будет недостаточно для начала скольжения бруска: $T_m \le \mu Mg$.

Подсказка 3: второе условие означает, что даже в самом верхнем положении груза пружина не сжата, то есть ее деформация неотрицательна.

Решение:

Ясно, что груз будет совершать гармонические колебания только при выполнении двух условий: брусок не будет скользить по столу (иначе механическая энергия будет переходить в тепло) и нить не будет провисать (при ненатянутой нити груз движется с постоянным ускорением g). Первое условие будет выполнено, если даже при максимальном растяжении пружины (в самом нижнем положении груза) силы натяжения нити будет недостаточно для начала скольжения бруска: $T_m \leq \mu Mg$. Сила натяжения нити создается пружиной.

Максимальное удлинение пружины равно сумме ее равновесного удлинения $\Delta l_0 = \frac{mg}{k}$ (где k

- коэффициент жесткости пружины) и амплитуды колебаний. Значит, первое требование приводит к ограничению на амплитуду:

$$k(\Delta l_0 + x_m) \le \mu Mg \Rightarrow x_m \le A_1 = \frac{(\mu M - m)g}{L}.$$

Второе условие означает, что даже в верхнем положении груза пружина не сжата, то есть ее деформация неотрицательна:

$$\Delta l_0 - x_m \ge 0 \Rightarrow x_m \le A_2 = \frac{mg}{k}$$
.

Для выполнения обоих требований необходимо и достаточно, чтобы

$$x_m \le \min\{A_1, A_2\} = \min\left\{\frac{(\mu M - m)g}{k}, \frac{mg}{k}\right\}.$$

Частота гармонических колебаний груза на пружине $v = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \Rightarrow k = m(2\pi v)^2$, поэтому

$$x_m \le \min\left\{\frac{(\mu M - m)g}{m(2\pi \nu)^2}, \frac{g}{(2\pi \nu)^2}\right\}.$$

В данной задаче $A_1 = \frac{(\mu M - m)g}{m(2\pi v)^2} \approx 4.2 \text{ cm}$, а $A_2 = \frac{g}{(2\pi v)^2} \approx 2.8 \text{ cm}$, поэтому основным

оказывается второе ограничение.

Ответ: 28.

Задача 8 (3 балла) [гармонические колебания, колебательный контур]

В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменялся заряд на одной из обкладок конденсатора в контуре с течением времени:

t, MKC	0	1	2	3	4	5	6	7	8	9
q, нКл	2	1,42	0	-1,42	-2	-1,42	0	1,42	2	1,42

Чему равно максимальное значение силы тока в катушке. Ответ дайте в мА, округлив до десятых.

Подсказка 1: Из таблицы видно, что период колебаний в катушке $T=8\,\mathrm{mkc}$, а максимальный заряд конденсатора $q_{\mathrm{max}}=2\,\mathrm{nk}$ л.

Подсказка 2: Максимальная сила токи в катушке и максимальный заряд конденсатора связаны соотношением $\frac{LI_{\max}^2}{2} = \frac{q_{\max}^2}{2C}$.

Подсказка 3: Согласно формуле Томсона, $T=2\pi\sqrt{LC}$.

Решение:

Из таблицы видно, что период колебаний в катушке $T=8\,\mathrm{mkc}$, а максимальный заряд конденсатора $q_{\mathrm{max}}=2\,\mathrm{nKn}$. В соответствии с законом сохранения энергии, максимальная сила токи в катушке и максимальный заряд конденсатора связаны соотношением $\frac{LI_{\mathrm{max}}^2}{2}=\frac{q_{\mathrm{max}}^2}{2C} \Rightarrow I_{\mathrm{max}}=\frac{1}{\sqrt{LC}}\,q_{\mathrm{max}}\,.$ Согласно формуле Томсона, $T=2\pi\sqrt{LC}$, поэтому $I_{\mathrm{max}}=\frac{2\pi}{T}\,q_{\mathrm{max}}\approx 1,6\,\mathrm{mA}.$

Ответ: 1,6.

Задача 9. (4 балла) [гармонические колебания, колебательный контур, закон колебаний]

В идеальном колебательном контуре происходят гармонические колебания с периодом $T=0.628\,\mathrm{mc}$. В некоторый момент времени заряд конденсатора оказался равен $q_0=20\,\mathrm{mkKn}$, а ток в катушке $I_0=0.1\,\mathrm{A}$ (полярность показана на рисунке 5). Через какое время после этого заряд конденсатора впервые обратится в ноль? Ответ выразить в мс, округлив до десятых.

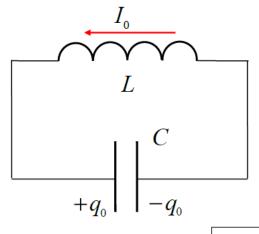


рисунок 5

Подсказка 1: гармонические колебания заряда и тока в идеальном контуре описываются выражениями: $q(t) = q_m \cdot \cos(\omega t + \varphi_0)$, $I(t) = -\omega q_m \cdot \sin(\omega t + \varphi_0)$.

Подсказка 2: в момент времени t=0 начальные значения $q_0=q_m\cdot\cos(\varphi_0)$, $I_0=-\omega\,q_m\cdot\sin(\varphi_0)$ (причем I_0 положительно в соответствии с направлением тока, показанным на рисунке 4 — видно, что ток «дозаряжает» конденсатор).

Подсказка 3: из этих соотношений:
$$tg(\varphi_0) = -\frac{I_0}{\omega q_0} = -\frac{I_0 T}{2\pi q_0} \approx -0.5$$
 .

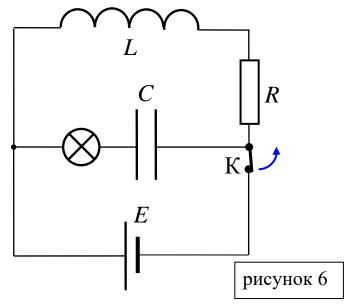
Решение:

Гармонические колебания заряда и тока в идеальном контуре описываются выражениями: $q(t) = q_m \cdot \cos(\omega t + \varphi_0) \,, \qquad I(t) = -\omega \, q_m \cdot \sin(\omega t + \varphi_0) \,. \qquad \text{Поэтому} \qquad q_0 = q_m \cdot \cos(\varphi_0) \,,$ $I_0 = -\omega \, q_m \cdot \sin(\varphi_0) \,(\text{причем} \quad I_0 \quad \text{положительно} \quad \text{в соответствии с направлением тока,}$ показанным на рисунке 4 — видно, что ток «дозаряжает» конденсатор). Как видно, $tg(\varphi_0) = -\frac{I_0}{\omega q_0} = -\frac{I_0 T}{2\pi q_0} \approx -0.5 \,. \quad \text{Моменты обращения заряда в ноль определяются из}$ равенства $q(t) = 0 \Rightarrow \cos(\omega t + \varphi_0) = 0 \,. \quad \text{Минимальный положительный корень отвечает}$ $t = \frac{1}{\omega} \left(\frac{\pi}{2} + arctg(0.5) \right) = T \left(\frac{1}{4} + \frac{arctg(0.5)}{2\pi} \right) \approx 0.2 \,\text{мс.}$

Ответ: 0,2.

Задача 10 (4 балла) [закон Ома, колебательный контур, энергия колебаний, затухающие колебания]

В схеме, показанной на рисунке 4, ключ K достаточно долго был замкнут. Какое количество теплоты выделится в нити лампы после размыкания ключа? Емкость конденсатора $C=5\,\mathrm{mk\Phi}$, индуктивность катушки $L=50\,\mathrm{mF}$ н, сопротивление нити лампочки можно считать постоянным и равным трети сопротивления резистора $R=100\,\mathrm{Om}$, омическое сопротивление катушки и внутреннее сопротивление источника пренебрежимо малы. ЭДС источника $E=80\,\mathrm{B}$. Ответ выразить в мДж.



Подсказка 1: пока ключ замкнут, в ветви с катушкой и резистором течет постоянный ток $I_0 = \frac{E}{R}$, а напряжение на конденсаторе равно E .

Подсказка 2: после размыкания ключа в контуре начинаются затухающие колебания, в ходе которых практически вся накопленная энергия (то есть энергия полей в конденсаторе и в катушке) выделяется в схеме в виде тепла.

Подсказка 3: это тепло распределяется между элементами контура пропорционально их сопротивлениям.

Решение:

Пока ключ был замкнут, схема перешла в «установившийся» (стационарный) режим, в котором в ветви с катушкой и резистором течет постоянный ток, определяемый из закона Ома для полной цепи: $I_0 = \frac{E}{R}$, напряжение на конденсаторе равно E, и его заряд $q_0 = CE$. После размыкания ключа в контуре начинаются затухающие колебания, в ходе которых вся накопленная энергия $W_0 = \frac{q_0^2}{2C} + \frac{LI_0^2}{2} = \left(C + \frac{L}{R^2}\right)\frac{E^2}{2}$ выделяется в схеме в виде тепла (излучением пренебрегаем). Это тепло распределяется между элементами контура пропорционально их сопротивлениям (так как все они соединены последовательно). Пренебрегая сопротивлением катушки, приходим к выводу, что четверть общего количества теплоты (Q_1) выделяется в нити лампы, а три четверти (Q_2) — в резисторе. Таким образом, $Q_1 = \frac{1}{4}W_0 = \left(C + \frac{L}{R^2}\right)\frac{E^2}{8} = 8$ мДж.

Ответ: 8.